skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conitzer, Vincent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 13, 2026
  2. Free, publicly-accessible full text available February 25, 2026
  3. Free, publicly-accessible full text available February 25, 2026
  4. Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a "judgment" on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  5. Leitner, Stephan (Ed.)
    ObjectivePeer review frequently follows a process where reviewers first provide initial reviews, authors respond to these reviews, then reviewers update their reviews based on the authors’ response. There is mixed evidence regarding whether this process is useful, including frequent anecdotal complaints that reviewers insufficiently update their scores. In this study, we aim to investigate whether reviewersanchorto their original scores when updating their reviews, which serves as a potential explanation for the lack of updates in reviewer scores. DesignWe design a novel randomized controlled trial to test if reviewers exhibit anchoring. In the experimental condition, participants initially see a flawed version of a paper that is corrected after they submit their initial review, while in the control condition, participants only see the correct version. We take various measures to ensure that in the absence of anchoring, reviewers in the experimental group should revise their scores to be identically distributed to the scores from the control group. Furthermore, we construct the reviewed paper to maximize the difference between the flawed and corrected versions, and employ deception to hide the true experiment purpose. ResultsOur randomized controlled trial consists of 108 researchers as participants. First, we find that our intervention was successful at creating a difference in perceived paper quality between the flawed and corrected versions: Using a permutation test with the Mann-WhitneyUstatistic, we find that the experimental group’s initial scores are lower than the control group’s scores in both the Evaluation category (Vargha-DelaneyA= 0.64,p= 0.0096) and Overall score (A= 0.59,p= 0.058). Next, we test for anchoring by comparing the experimental group’s revised scores with the control group’s scores. We find no significant evidence of anchoring in either the Overall (A= 0.50,p= 0.61) or Evaluation category (A= 0.49,p= 0.61). The Mann-WhitneyUrepresents the number of individual pairwise comparisons across groups in which the value from the specified group is stochastically greater, while the Vargha-DelaneyAis the normalized version in [0, 1]. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  6. Computational preference elicitation methods are tools used to learn people’s preferences quantitatively in a given context. Recent works on preference elicitation advocate for active learning as an efficient method to iteratively construct queries (framed as comparisons between context-specific cases) that are likely to be most informative about an agent’s underlying preferences. In this work, we argue that the use of active learning for moral preference elicitation relies on certain assumptions about the underlying moral preferences, which can be violated in practice. Specifically, we highlight the following common assumptions (a) preferences are stable over time and not sensitive to the sequence of presented queries, (b) the appropriate hypothesis class is chosen to model moral preferences, and (c) noise in the agent’s responses is limited. While these assumptions can be appropriate for preference elicitation in certain domains, prior research on moral psychology suggests they may not be valid for moral judgments. Through a synthetic simulation of preferences that violate the above assumptions, we observe that active learning can have similar or worse performance than a basic random query selection method in certain settings. Yet, simulation results also demonstrate that active learning can still be viable if the degree of instability or noise is relatively small and when the agent’s preferences can be approximately represented with the hypothesis class used for learning. Our study highlights the nuances associated with effective moral preference elicitation in practice and advocates for the cautious use of active learning as a methodology to learn moral preferences. 
    more » « less
  7. We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes PPAD, PLS, Σ_2^P, ∃R, and ∃∀R. 
    more » « less
  8. Bilateral trade is one of the most natural and important forms of economic interaction: A seller has a single, indivisible item for sale, and a buyer is potentially interested. The two parties typically have different, privately known valuations for the item, and ideally, they would like to trade if the buyer values the item more than the seller. The celebrated impossibility result by Myerson and Satterthwaite shows that any mechanism for this setting must violate at least one important desideratum. In this paper, we investigate a richer paradigm of bilateral trade, with many self-interested buyers and sellers on both sides of a single trade who cannot be excluded from the trade. We show that this allows for more positive results. In fact, we establish a dichotomy in the possibility of trading efficiently. If in expectation, the buyers value the item more, we can achieve efficiency in the limit. If this is not the case, then efficiency cannot be achieved in general. En route, we characterize trading mechanisms that encourage truth-telling, which may be of independent interest. We also evaluate our trading mechanisms experimentally, and the experiments align with our theoretical results. 
    more » « less
  9. We study equilibrium computation with extensive-form correlation in two-player turn-taking stochastic games. Our main results are two-fold: (1) We give an algorithm for computing a Stackelberg extensive-form correlated equilibrium (SEFCE), which runs in time polynomial in the size of the game, as well as the number of bits required to encode each input number. (2) We give an efficient algorithm for approximately computing an optimal extensive-form correlated equilibrium (EFCE) up to machine precision, i.e., the algorithm achieves approximation error 𝜀 in time polynomial in the size of the game, as well as log(1/𝜀). Our algorithm for SEFCE is the first polynomial-time algorithm for equilibrium computation with com- mitment in such a general class of stochastic games. Existing algorithms for SEFCE typically make stronger assumptions such as no chance moves, and are designed for extensive-form games in the less succinct tree form. Our algorithm for approximately optimal EFCE is, to our knowledge, the first algorithm that achieves 3 desiderata simultaneously: approximate optimality, polylogarithmic dependency on the approximation error, and compatibility with stochastic games in the more succinct graph form. Existing algorithms achieve at most 2 of these desiderata, often also relying on additional technical assumptions. 
    more » « less
  10. Pennock, David M.; Segal, Ilya; Seuken, Sven (Ed.)
    We consider the problem of planning with participation constraints introduced in [24]. In this problem, a principal chooses actions in a Markov decision process, resulting in separate utilities for the principal and the agent. However, the agent can and will choose to end the process whenever his expected onward utility becomes negative. The principal seeks to compute and commit to a policy that maximizes her expected utility, under the constraint that the agent should always want to continue participating. We provide the first polynomial-time exact algorithm for this problem for finite-horizon settings, where previously only an additive ε-approximation algorithm was known. Our approach can also be extended to the (discounted) infinite-horizon case, for which we give an algorithm that runs in time polynomial in the size of the input and log(1/ε), and returns a policy that is optimal up to an additive error of ε. 
    more » « less